ZMIANY INTENSYWNOŚCI WYŁADOWAŃ NIEZUPEŁNYCH
W ELEKTROENERGETYCZNYCH KABLACH POLIETYLENOWYCH

1. Wstęp

 Ważnym zagadnieniem z punktu widzenia obiektywnej oceny stanu izolacji urządzeń elektroenergetycznych jest zjawisko samowygaszań wyładowań niezupełnych. Przyczynami tego zjawiska są procesy fizyko-chemiczne zachodzące wewnątrz wtrąciny gazowej. Pojęciu wewnątrz wtrąciny należy rozumieć przestrzeń gazową wraz z warstwą dielektryka otaczającego wtrącinę. Do pewnego wyjaśnienia mechanizmu tych procesów przyczyniły się badania prowadzone przez wielu autorów na układach modelowych z pojedynczą sztuczną wtrąciną.

 Wydaje się, że zjawisko występuje szczególnie silnie w przypadku izolacji tworzących sztucznych, w tym również elektroenergetycznych kabli polietylenowych. Próba wyjaśnienia zmian wielkości określających intensywność wyładowań niezupełnych w kablu polietylenowym z samodelowana sztuczną wtrąciną zawarta jest w pracy [3].

 W pracy niniejszej zawarte są wyniki badań zmian intensywności wyładowań w izolacji polietylenowej kabli elektroenergetycznych na napięcie 15 kv.
2. Metoda badań i układ pomiarowy

Pomiar wyładowań niespełnionych przeprowadzany był w układzie przedstawionym na rys.1.

![Rys.1. Schemat układu do pomiaru wyładowań niespełnionych: UZ - układ zabezpieczający, R - rejestrator nizinny, C_g - kondensator sprzęgający 120 pF, GS - generator impulsów skalujących, F - filtr górnoprzepustowy, PK - przelicznik elektronowy, OX - oscyloskop katodowy.]

Przelicznik elektronowy PT-72 z regulacją prędu dyskryminacji amplitudowej został użyty do zliczania impulsów napięciowych powstających na impedancji pomiarowej Z. Rejestrator w układzie zasilającym służył do pomiaru czasu i kontroli napięcia. Skalowanie układu przeprowadzono przy pomocy transystorowego generatora impulsów prostokątnych o czasie narastania 15 ms i kondensatora o pojemności 2,5 pF.

Dla uniknięcia zliczania składowej 50 Hz, pojawiającej się na impedancji pomiarowej Z, w obwód pomiarowy został włączony filtr F. Czułość układu pomiarowego dla przelicznika impulsów wynosiła 12 pC.

Badaniem poddane zostały odcinki kabli elektroenergetycznych o izolacji polietylenuowej na napięcie znamionowe 15 kV i o przekroju były przewodzącej 70 mm². Odcinki kabla o długości 2 m zostały umieszczone w głowicach olejowych ze sterowanym rozkładem pola. Głowice w zakresie stosowanych napięć nie wykazywały wyładowań niespełnionych.
Otrzymane w czasie pomiarów wyniki przedstawione w postaci następujących zależności:

- wielkości przenoszonego ładunku pozornego wyładowań niespełnionych w funkcji amplitudy pojedynczego impulsu:

\[
\frac{n_i \cdot Q_i}{Q_c} = f /Q_i/
\]

- ilość impulsów w i-tym przedziale utworzonym przez dwie kolejne nastawy dyskryminatora amplitudy,

- średnia wartość amplitudy ładunku tego przedziału,

- całkowity ładunek przenoszony równy

\[
Q_c = \Sigma n_i \cdot Q_i
\]

- ładunku maksymalnego w funkcji czasu

\[
Q_{\text{max}} = f/t/
\]

- średniego prądu wyładowań niespełnionych w funkcji czasu

\[
I = f/t/
\]

3. Omówienie wyników badań

Otrzymane rozkłady w funkcji amplitudy miały przebiegi bardzo złożone. W większości przypadków występowały dwie, trzy, a nawet cztery wartości maksymalne. Wskazuje to na istnienie superpozycji z kilku rozkładów wywołanych wyładowaniami w różnych miejscach izolacji [2]. Bardzo typowy proces zmian charakterystyk amplitudowych przedstawia rys.2. Rozkład początkowy posiadał trzy maksima lokalne, natomiast charakterystyki otrzymane po 24 oraz 72 godzinach wykazują tylko dwie wartości maksymalne.
Rys. 2. Charakterystyki ładunku przenoszonego w funkcji amplitudy pojedynczego impulsu $U_p = 37$ kv.
1 - początek próby,
2 - 24 godz. próby,
3 - 72 godz. próby.

Obserwowaną prawidłowością, w trakcie przebywania próbki pod napięciem były przeznaczenia maksimum lub całych krzywych rozkładów impulsów w kierunku malejących wartości ładunku lub stopniowy wzrost udziału ładunków o mniejszej wartości w całkowitym ładunku przenoszonym w przypadku istnienia od samego początku maksimum dla małych ładunków. W przypadku przedstawionym na rys. 2 wyładowania niespokojne zanikały całkowicie po 120 godzinach od początku próby. Również na 13 godzin przed przebiciem pomiar nie wykazwał istnienia wyładowań niespokojnych.
W szeregach pracach opartych na wynikach badań modelowych z pojedynczą stratą sztuczną, autorzy wskazują na duże znaczenie przerw beznapięciowych, po których intensywność wylądowań może osiągnąć poziom obserwowany na początku próby.

Na rys. 3 przedstawione są wyniki pomiarów reprezentatywne dla całości przedstawionych badań nad wpływem przerwy beznapięciowej na zjawisko samowygaszenie wylądowań niezupełnych.

Rys. 3. Charakterystyki ładunku przenoszonego w funkcji amplitudy pojedynczego impulsu.

1. $U_p = 37$ kV.
2. początek próby,
3. 63 godz. próby,
4. 83 godz. próby, po 20-tygodzinnjej przerwie beznapięciowej.
Stwierdzono dużą odwzorowalność procesów zachodzących we wtrącienach. Charakterystyki zdejmowane po przewieśc były przesunięte w kierunku większych wartości ładunku niż przed przewieśc, często pokrywając się w części z krawędzi pociągowych rozkładów.

Przyjmując za miarę intensywności średni prąd wyładowań widzieć z rys. 4, że szybkość procesu samowygłaszania jest największa w pierwszych godzinach próby. Jednocześnie, poniż 1,5 krotne obniżenie wartości ładunku maksymalnego jest konsekwencją przesunięcia się charakterystyk amplitudowych w kierunku malejących wartości ładunku pojedynczego impulsu. Czas do ustalania się wielkości opisujących wyładowania niezależnie lub do zupełnego ich zaniku był różny dla różnych prób i wynosił od kilkudziesięciu minut do staczkumiesięciu godzin.

![Diagram](image-url)
4. Zakończenie

Wimo pewnych prawidłowości zjawiska samowysazania istnieje duża przypadkowość obserwowanych zmian. Niezależnie od zaistniałych przerw beznpocięciowych obserwowano okresowe, przypadkowe zmiany intensywności wyładowań. W kilku przypadkach rejestrowano gwałtowne, krótkotrwałe wzrosty wartości ładunku całkowitego na kilkaasiędziesiąt godzin przed przebiegiem.

Literatura

3. Florkowska B. – Issledowani przejścia czasowych rozрядów w polietylenowej izolacji silowych kabeli. III Konferencja "ELI ZOT-74" Warna 1974

