Michał Daszczyszak

AWARYJNOŚĆ IZOLATORÓW WSPORCZYCH
W CZASIE TRWANIA ZWARCIA

Streszczenie: W referacie przedstawiono elektrodynamiczne oddziaływanie prądów zwarcowych w rozdziałach najwyższych napięć z oszynowaniem giętkim na izolatory wsporcze. Ze względu na to, że analiza dynamiki oszynowania giętego jest bardzo skomplikowana, dlatego wykorzystano do tego celu specjalne programy komputerowe – „SCC” oraz „TUT-Fs”.

Słowa kluczowe: zwarcie, oddziaływanie elektrodynamiczne, izolatory wsporcze

1. Wprowadzenie

W rozdziałach napowietrznych NN długość szyn zbiorczych wynosi od kilkunastu do kilkudziesięciu metrów. Naciąg statyczny przewodów oszynowania waha się w granicach od kilku do kilkunastu kN. Dla oszynowania wykonanego przewodem pojedynczym wartość naciągu statycznego nic powinna przekroczyć 7,5 kN, natomiast dla oszynowania wykonanego przewodem wiązkowym wartość naciągu statycznego nie powinna przekroczyć 15 kN. W przypadku połączeń pomiędzy aparatami rozdziałnej długość oszynowania zwykle nie przekracza kilku metrów a wartości naciągów statycznych przewodów nie przekraczają z reguły kilku kN.

Geometryczne wymiary wiązki, a zwłaszcza odstęp między przewodami w wiązce „C” oraz odległość między odstępnikami (długość podprzęsła), mają istotny wpływ na pochodzącą od prądu zwarcowego siłę, która działa na izolatory wsporcze. Siła pochodząca od „sklejania” się przewodów w wiązce pinch effect jest w przybliżeniu proporcjonalna do odstępu między przewodami, dlatego celowe jest stosowanie możliwie jak najmniejszego odstępu. Jednakże zbyt mały odstęp „C” może mieć następujące niekorzystne skutki:
- zmniejszenie obciążalności prądowej,
- ocieranie się przewodów przy prądach roboczych,
- niebezpieczeństwo zlepienia przewodów przy obladowaniu,
- zwiększony utot.

1 Akademia Górniczo-Hutnicza, Zakład Elektroenergetyki, al. Mickiewicza 30, 30-059 Kraków
Przepływ prądu zwarciaowego przez oszynowanie giętkie zawieszane pomiędzy izolatorkami wsporczymi, powoduje m. in. oddziaływanie dynamiczne pomiędzy przewodami samej wiązki oraz oddziaływanie dynamiczne pomiędzy fazami.

Skutki dynamicznych prądów zwarciaowych w rozdzielnikach z przewodami giętkimi są znacznie bardziej złożone niż w rozdzielnikach z przewodami sztywnymi. Występują tu bowiem znaczne ruchy przewodów, które wpływają na siły zarówno wskutek zmiany odległości oddziaływujących na siebie przewodów przewodzących prąd zwarciaowy, jak i wskutek energii kinetycznej poruszających się mas przewodów.

Wartości maksymalnych sił działających na izolatory wsporcze w czasie trwania zwarcia, autor uzyskał za pomocą specjalistycznego programu komputerowego „SCC”, który oparty jest na normie [6], natomiast czasowy przebieg siły działającej na izolator wsporczy przy zwarciu autor otrzymał za pomocą specjalistycznego programu komputerowego „TUT-Fs” – Rys.2 i 3.

2. Model analizowanego izolatora

Analizowany izolator wsporczy, można w sposób uproszczony zastąpić układem sprzężystym, charakteryzującym się określoną sprzężystością „S_f” oraz masą „M_i” [6].

W przypadku rozpatrywania połączeń pomiędzy aparatami rozdzielczymi, dla których długość oszynowania giętkiego nie przekracza kilku metrów, naciągi zwarciaowe mogą stanowić zagrożenie mechaniczne dla izolatorów aparatowych i wsporczych.

![Diagram izolatora](image)

Rys. 1. Model analizowanego izolatora

Dynamikę izolatora wsporczego, na który działa wymuszenie – siła F_{S_j}, zapisuje się w postaci:

\[M_i \cdot \ddot{w}_j + S_i \cdot w_j = F_{S_j} \]

(1)

Siłę działającą na badany izolator wsporczy wyznacza się na podstawie prawa Hooke’a z zależności:

\[F_{S_j} = F_{S_{nj}} + \frac{n \cdot S_n \cdot Y}{L} \left(\Delta l_{nj} + \Delta l_{jb} + \Delta l_{wj} \right) \]

(2)

gdzie: w_{j} – odchylenie izolatora wsporczego „j”-tej fazy, M_{i} – masa izolatora wsporczego, S_{i} – sprzężystość izolatora wsporczego, F_{S_{nj}} – naciąg statyczny przewodu wiązkoowego „j”-tej fazy, n – liczba przewodów w wiązce, S_{n} – przekrój pojedynczego przewodu w wiązce,
Y – moduł Young’a przewodu wiązkowego, \(\Delta l_{ij} \) – przyrost długości przewodu wiązkowego spowodowany „sklejaniem” się wiązki tzw. *pinch effect*, \(\Delta l_{ij} \) – przyrost długości przewodu wiązkowego spowodowany zmianą zwisu przewodu, \(\Delta l_{uj} \) – przyrost długości przewodu wiązkowego spowodowany odchyleniem elementów wspornych.

![Rys. 2. Przebieg siły działającej na izolator wsporniczy przy zwarciu 2-fazowym dla \(F_n = 750 \, N \)](image)

![Rys. 3. Przebieg siły działającej na izolator wsporniczy przy zwarciu 2-fazowym dla \(F_n = 2650 \, N \)](image)

3. Ryzyko uszkodzenia izolatora

Podejście probabilistyczne wiąże się z analizą ryzyka wynikającego z możliwości uszkodzenia aparatów i urządzeń przez nadmierną prądy zwarcia. Dla oszacowania ryzyka wykorzystuje się probabilistyczny model „obciążenie – wytrzymałość” [2].

Ryzyko uszkodzenia badanego izolatora jest ściśle związane z czasem oczekiwanyym pomiędzy kolejnymi uszkodzeniami – \(T_u \). Znając wartość \(T_u \) oraz koszty związane z wymianą izolatora, oraz koszty obejmujące wszystkie skutki uszkodzenia i koszty niedostarczonej energii, można opierając się na rachunku ekonomicznym określić, które działanie (dopuszczenie do dalszej pracy z przekroczeniem czy modernizacja) jest bardziej opłacalne. W ten
prosty sposób można zdefiniować kryterium ekonomiczne, które stanie się podstawą metody probabilistyczno - ekonomicznej.

Znajomość wartości prądów początkowych zwarcia jest niezbędna przy projektowaniu, budowie i modernizacji sieci elektroenergetycznych. Wartości prądów początkowych w sieciach NN zależą od wielu czynników losowych, z których najważniejszymi są:
- miejsce zwarcia,
- rodzaj zwarcia,
- liczba oraz rozmieszczenie generatorów załączonych przed wystąpieniem zwarcia (zestaw generatorów).

Pomimo, że zwarcia trójfazowe (zwarcia symetryczne) występują stosunkowo najrzedniej, to prądy zwarcowe w trakcie tych zwar pływające mogą być znacznie większe niż prądy zwarcowe w przypadku zwar niesymetrycznych – dlatego powinno się projektować i dobieć urządzenia i sieci elektroenergetyczne ze względu na wielkość prądów symetrycznych.

Ryzyko jest to kombinacja prawdopodobieństwa występowania skutków określonego niepożądanej zdarzeniu spowodowanym zagrożeniem.

Ryzyko uszkodzenia pary izolatorów wsporczych w „i”-tej fazie na skutek „i”-tego rodzaju zwarcia:

\[
R_{j,i,ω} = \int_{\tilde{W}} f_{\tilde{w}}(\tilde{F}) \left[\int_{\sigma}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\tilde{F}_{j} - \tilde{F}_{j})^2}{2\sigma^2}} dF_{j} \right] d\tilde{F}_{j}
\]

gdzie: \(\tilde{W}\), \(\sigma\), \(F_{n}\) – parametry izolatora, \(F_{S}\) – siła działająca na izolator, \(f_{\tilde{w}}(\tilde{F})\) – funkcja gęstości prawdopodobieństwa siły.

Autor proponuje dopuszczalność pracy izolatorów wsporczych z przekroczoną wytrzymałością mechanikalną – podejście probabilistyczne.

O możliwości dopuszczenia danego elementu do pracy z przekroczeniem decyduje wartość współczynnika bezpieczeństwa \(k_{ij}\) [2]. Elementy dla których wartość współczynnika jest mniejsza od jedności należy wymienić na nowe o wyższej wytrzymałości mechanikalnej. Jeżeli nie ma możliwości wymiany wszystkich elementów, dla których \(k_{ij} < 1\), to w pierwszej kolejności należy wymienić te elementy, dla których wartość współczynnika bezpieczeństwa \(k_{ij}\) jest najmniejsza – tzw. strategia modernizacji.

4. Wnioski i spostrzeżenia

A. Dla oszacowania ryzyka uszkodzenia izolatora wykorzystuje się probabilistyczny model „obciążenie – wytrzymałość” [2]. Wartości prądu zwarcowego, dla badanego miejsca zwarcia, otrzymuje się w oparciu o metodę [1]. Do analizy dynamiki oszynowania giętkiego „n”-przewodowego zawieszonego pomiędzy izolatorami wsporczymi zastosowano model oszynowania wiązkowego [3].

B. Wartości maksymalnych sił działających na izolatory wsporczyce uzyskano za pomocą specjalistycznego programu komputerowego „SCC” – opartego na normie [6].

W Tabeli 1. przedstawiono porównanie rezultatów uzyskanych za pomocą programu „SCC”, z wynikami pomiarów prof. Steina [4].
Tab.1. Wartości maksymalnej siły przy zwarciaach 2-fazowych

<table>
<thead>
<tr>
<th>Wybrane przypadki dla I'k = 30 kA</th>
<th>n</th>
<th>k</th>
<th>Stein kN</th>
<th>„TUT-Fs“ kN</th>
<th>„SCC“ kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{st} = 750 N, L = 7 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>1</td>
<td>2980</td>
<td>3000</td>
<td>2183</td>
</tr>
<tr>
<td>F_{st} = 750 N, L = 7 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>2</td>
<td>3150</td>
<td>3200</td>
<td>2183</td>
</tr>
<tr>
<td>F_{st} = 1350 N, L = 10 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>1</td>
<td>4170</td>
<td>4430</td>
<td>3813</td>
</tr>
<tr>
<td>F_{st} = 1350 N, L = 10 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>2</td>
<td>4330</td>
<td>4880</td>
<td>3813</td>
</tr>
<tr>
<td>F_{st} = 2650 N, L = 15 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>1</td>
<td>6460</td>
<td>7500</td>
<td>7084</td>
</tr>
<tr>
<td>F_{st} = 2650 N, L = 15 m, L_{f} = 4.0 m</td>
<td>2</td>
<td>2</td>
<td>6460</td>
<td>7620</td>
<td>7084</td>
</tr>
</tbody>
</table>

gdzie: n – liczba przewodów w wiązce, k – liczba podprzesął.

C. Przyjęty model matematyczny badanego elementu jest podstawą programu komputerowego „TUT-Fs”, który pozwala analizować dynamiczne oszynowanie giętkiego „m”-przewodowego zawieszonego pomiędzy izolatorami. Otrzymane na drodze obliczeniowej wyniki są zbliżone z rezultatami pomiarów – Tab.1, co potwierdza poprawność przyjętego modelu.

D. Na podstawie bazy programowej (program „SCC” oraz „TUT-Fs”) można w przyszłości tak projektować oszynowanie giętkie w stacjach, aby wyeliminować ewentualne przekroczenie wytrzymałości mechanicznej izolatorów wsporczych, oraz ryzyko z tym związane.

Literatura

5. PN-90E-05025: *Obliczanie skutków prądów zwarcowych*.

DAMAGE OF SUPPORTING INSULATORS DURING SHORT-CIRCUIT CURRENT

The paper refers electrodynamic iteration between short-circuit currents with flexible bus system on supporting insulators at power station. The analysis of flexible busbar systems is much more complicated. For calculating short-circuit forces in bundled conductors and the mechanical loads on supporting insulators one use „SCC“ & „TUT-Fs“ - computer programs.

Pracę wykonano w ramach umowy statutowej: 11.11.120.10

87