Andrzej Jagiełło

NOWOCZESNE LINIE TECHNOLOGICZNE NA NOWYM WYDZIALE KABLI ELEKTROENERGETYCZNYCH KFK S.A.

Spółka posiada pełne rozczucanie problematyki produkcji kabli w izolacji XLPE. Ponadto fabryka od paru lat produkuje kable średnich napięć o izolacji XLPE w kooperacji z kablowniami zagranicznymi, uczestnicząc na bieżąco w procesach produkcji, badań i sprzedaży kabli. Fabryka dostosowuje również na bieżąco asortyment produkcyjny tych kabli do żądań rynku uruchamiając pod koniec 1994 roku produkcję kabli uszczelnionych w powłokach polietylenowych. Rozpoznanie problemów technicznych i rynkowych prowadzone jest w sposób ciągły. Uruchomienie produkcji kabli o izolacji XLPE stanowi bardzo ważne uzupełnienie obecnej oferty kabli średnich napięć o izolacji papierowej. Na linii CV- linii do sieciowania izolacji w polietylenie będzie można produkować również kabla XLPE wysokich napięć do 150 kV. Linia może być wykorzystywana do produkcji przewodów napowietrznych na 1 kV i 20 kV, a także do produkcji niektórych kabli na napięcie od 1÷6 kV.

Głównym procesem na nowej linii CV stanowiącym o jakości i nowoczesności kabli średnich i wysokich napięć o izolacji XLPE jest proces wytłaczania i sieciowania XLPE prowadzony na „sucho” w atmosferze azotu.

W procesie tym można wydzielić 3 fazy technologiczne:

- równoczesne wytłaczanie z jednej głowicy potrójnej łącznie 3 warstw XLPE (ekran na żyłę, izolacja, ekran na izolacji); taki sposób wytłaczania zapewnia doskonałe połączenie 3 warstw tworzywa i eliminuje możliwość powstania szczelin międzywarstwowych, wrażeń powietrznych oraz zapobiega chwytaniu zanieczyszczeń z otoczenia; jest to najnowszy, powszechnie akceptowany sposób wytłaczania izolacji i ekranów kabli XLPE.
- sieciowanie w atmosferze gorącego azotu (temperatura ok.250°C) jako medium grzejnego, eliminuje to możliwość absorpcji cząstek wody przez izolację i ekrany; system sieciowania w azocie, obecnie uznaną jest za optymalny przy produkcji kabli średnich i wysokich napięć,
- chłodzenie, podobnie jak sieciowanie, odbywa się w azocie celem uniknięcia wpływu wody na izolację.

1 Krakowska Fabryka Kabli S.A. Grupa Kapitałowa Tele-Fonika
Linia CV wyposażona jest w najnowsze technicznie systemy i podzespoły technologiczno-kontrolne zapewniające absolutnie najwyższą światową jakość produkowanych kabli. Należy tu wymienić:

- najnowszy typ głowicy potrójnej HTX – zapewnia łatwość i niezawodność centrowania warstw,
- system Sikora 8000 do pomiaru grubości i centryczności warstw – zapewnia bieżącą kontrolę i natychmiastową korektę warstw,
- system wstępnej obróbki ciepłej izolacji EHT – eliminuje ściskanie stopu i zapobiega owalizacji izolacji,
- system relaksacji izolacji ROL-G eliminuje naprężenia wewnętrzne oraz skurcz izolacji,
- system komputerowy sterowania linii typu Autocure 3 – zapewnia wyznaczenie optymalnych parametrów pracy linii w zależności od konstrukcji kabla, kontrolę pracy linii, powtarzalność procesu technologicznego.

Opisane powyżej podzespoły i systemy stanowią aktualnie najnowsze osiągnięcia w technice światowej w zakresie konstrukcji linii CV i technologii produkcji kabli XLPE. Praca linii CV z głowicą potrójną, rurą CV pracującą metodą suchą oraz super nowoczesne systemy technologiczne i kontrolne, gwarantują produkcję kabli o najwyższej jakości spełniające wszystkie standardy krajowe i zagraniczne. Taki proces produkcji kabli XLPE charakteryzuje się wysoką wydajnością, poziomem technicznym oraz uniwersalnością dla produktów w zakresie napięć 1 ÷ 150 kV. Innymi nowymi technologiami towarzyszącymi technologii głównej są technologie uszczelniania kabli:

- uszczelnienia żyły przewodzącej,
- uszczelnienia za pomocą taśmy pęcznieniowych,
- dodatkowo za pomocą taśmy metalowej nałożonej wzdłużnie.

Do produkcji kabli XLPE oprócz linii do sieciowania opisanej wyżej uruchomione są następujące maszyny i urządzenia:

- linia do nakładania powłok PVC, PE,
- pancerka z wirującym bębnem odbiorczym (drum twister) do nakładania żyły powrotnej,
- przewijarka,
- aparatura kontrolno-pomiarowa,

Bardzo istotnym elementem jest Laboratorium Wysokich Napięć, które wykonuje próbę napieciową kabli oraz pomiar wyladowań niezupełnych w ekranowanej komorze (klatka Faraday) eliminującej zakłócenia.

Kable uruchomione w wyniku przedsięwzięcia będą odpowiadały zaleceniom IEC, normom Krajo wym oraz uznany standardom takim jak: niemiecki VDE oraz angielski BS.

Zakres napięć: 1 ÷ 150 kV
Zakres przekrojów kabli Cu 50 ÷ 1000 mm²
Al. 50 ÷ 1200 mm²

Wyroby te będą charakteryzowały się wysokimi parametrami techniczno-eksploatacyjnymi w szczególności dużą obciążalnością prądową, odpornością na przeciążenia i zwarcia oraz dużą trwałością eksploatacyjną. Zaletą tych kabli jest również możliwość ich produkcji w długich odcinkach fabrykacyjnych oraz łatwość układania i montażu. Fabryka może oferować komplementarne dostawy tych kabli wraz z osprzętem renomowanych firm zachodnich. Należy podkreślić, że z wyżej wymienionych względów, kable te są preferowane przez przed-
siębiorstwa montażowe i użytkowników. Znajduje to potwierdzenie na rynkach światowych. Materiały na żyły przewodzące walcówki Cu i Al będą pochodzić od producentów krajo-
nych. Natomiast polietyleny na izolację i ekran półprzewodzące, materiały uszczelniające i powłokowe będą importowane z krajów zachodnich. Głownymi dostawcami polietylenów będą firmy BOREALIS, UNION CARBIDE, które dostarczają specjalne typy polietylenów do sięcienia dla kabli średnich i wysokich napięć. Surowce te posiadają bardzo ścisłe specyfikację techniczną. Należy podkreślić, że większość producentów kabli średnich i wysokich napięć zaopatruje się w polietyleny izolacyjne i półprzewodzące właśnie w wyżej wymienionych firmach ze względu na wysoką jakość surowców tych dostawców.

Charakterystyka wyposażenia nowego wydziału kabli elektroenergetycznych przedstawiona jest poniżej:

NOWOCZESNE LINIE PRODUKCYJNE
NOWY WYDZIAŁ KABLI ELEKTROENERGETYCZNYCH

1. Ekranarko - pancerka „Drum twister” firmy Caballe

- Przekroje żył: 35 ~ 1000 mm² Cu
 35 ~ 1200 mm² Al
- Średnica żył i kabli: 20 ~ 110 mm
- Max. ilość drutów: 110
- Rodzaje drutów: Cu, Al, stal
- Rodzaje taśm: tekstylne, papierowe, PVC, poliestrowe, folie metaliczne
- Urz. zdawcze i odbiorcze: Ø 1800 ~ Ø 2800 mm
- Max. prędkość obrotowa: 80 obr./min.
- Max. prędkość liniowa: 75 m/min.

2. Przewijarko - pancerka firmy Caballe

- Średnica żył i kabli: 15 ~ 115 mm
- Max. prędkość liniowa: 100 m/min.
- Urz. zdawcze i odbiorcze: Ø 950 ~ Ø 3200 mm
- Rodzaje taśm: Cu, stal, tekstylne, papierowe, PVC, poliestrowe
- Grubość taśm: 0,1 ~ 1,0 mm
- Szerokość taśm: 15 ~ 60 mm

3. Wytłaczarka Ø 150

Umożliwia wytłaczanie izolacji i powłok PVC, PE, XLPE i LSOH oraz wypełnień gu-
mowych i powłok.

- Zakres przekrojów żył: 50 ~ 1000 mm²
- Max. średnica żył lub kabla: 100 mm
- Max. prędkość liniowa: 100 m/min
– Urządzenia zdawcze i odbiorcze: Ø 950 – Ø 3200 mm

Główne elementy linii wytłaczarkowej Ø 150

– Urządzenia zdawcze i odbiorcze
– Urządzenie do nakładania bariery Glovera firmy Weber-Schorner
– Wytłaczarka do gumy Ø 120
– Wytłaczarka do tworzywa Ø 150
– Wytłaczarka pionowa do pasków kolorowych Ø 25
– Dozownik koncentratu lub środków sieciujących Plasticolor
– Wanna chłodnicza
– Tester napięcia firmy Zumbach
– Urządzenia kontrolne firmy Sikora
– Drukarka Jet-printer firmy Image
– Układ lamp utwardzających
– Urządzenie znakujące firmy Modek-Schorner

4. Linia wytłaczarkowa Ø 120 firmy Troester

Przeznaczona do wytłaczania izolacji PVC, PE, XLPE, LSOH oraz PE + ciekłe silany na żyłach kabli 0,6/1 kV - 3,6/6 kV.

– Zakres przekrojów żył: 16 ~ 300 mm²
– Max. średnica żyły: 21 mm
– Max. średnica kabla: 50 mm
– Max. prędkość liniowa: 150 m/min
– Urządzenia zdawcze i odbiorcze: Ø 1400 ~ Ø 2800 mm

Główne elementy linii wytłaczarkowej Ø 120

– Urządzenia zdawcze i odbiorcze
– Podgrzewacz żył
– Dozowniki materiału izolacyjnego (Sioplas) i katalizatora
– Dozowniki do wytłaczarki naskórkowej oraz do wytłaczarki pasków
– System dozowania i mieszania volumetrycznego
– System dozowania grawimetrycznego
– Wytłaczarka Ø 120
– Wytłaczarka Ø 60 do wytłaczania naskórkowego
– Wytłaczarka pionowa Ø 45 do wytłaczania pasków
– Podwójna głowica krzyżowa
– Próbnik wysokiego napięcia
– Układ pomiarowy średnicy
– Urządzenie znakujące żyły
5. Komory do sieciowania firmy Efkava

Przeznaczone są do sieciowania żył Cu i Al sieciowanych XLPE w atmosferze pary wodnej. Temperatura pary: 80 ~ 100°C przy wilgotności 100%. Pojemność komory umożliwia sieciowanie 25 ~ 60 km żył na bębnow w 1 cyklu produkcyjnym. Wykonanie komory z materiałów nierdzewnych z wysokim stopniem szczelności elementów konstrukcyjnych.

- Wyposażenie komór stanowią:
 - Instalacje dostarczające parę wodną
 - System zraszania wodą celem przyspieszania procesu
 - System wentylacyjny z orurowaniem
 - System mechanicznego załadunku i rozładunku
 - Regulatory, rejestratory i czynniki temperaturowe
 - Panel kontrolny z PLC

6. Skręcarka „Drum - twister” 6x2240/2800 firmy Pourtier

Linia służy do skręcania ośrodków kabli i przewodów z żył Cu i Al okrągłych i sektorowych izolowanych PE, PVC, XLPE, LSOH, które zdawane są z rotujących bębnow.

- Zakres przekrojów żył: 16 ~ 300 mm²
- Max. ilość skręconych żył: 6
- Średnica skręconych żył: 10 ~ 50 mm
- Średnica ośrodków: 15 ~ 110 mm
- Długość skoków skrętu: 300 ~ 2500 mm
- Prędkość liniowa: 15 ~ 250 m/min
- Urządzenia zadawcze rotujące: Ø 1250 ~ Ø 2240 mm
- Urządzenia odbiorcze rotujące: Ø 2240 ~ Ø 2800 mm
- Urządzenia zadawcze do wkładek PVC, gumowych
- Głowice do owijania taśmą z tworzywa sztucznego i taśmą tekstylną

7. Skręcarka 7 x 800/1600 firmy Pourtier

Przeznaczona do skręcania żył miedzianych izolowanych PVC, PE, XLPE lub gumą.

- Zakres przekrojów żył: 1 ~ 16 mm²
- Średnica izolowanej żyły: 3 ~ 8 mm
- Średnica ośrodka: 6 ~ 24 mm
- Skok skrętu: 60 ~ 390 mm
- Max. prędkość obrotowa: 300 obr./min
- Max. prędkość liniowa: 150 m/min

Odbiór skręconych ośrodków kabli na bębny o max. Ø 1600 mm. Żyły zdawane są z nieruchomych szpul metalowych Ø 800. Dodatkowe wyposażenie stanowią urządzenia zadawcze do wkładki z gumi lub tworzyw oraz głowice do owijania taśmą z tworzywa sztucznego lub
taśmą tekstylną. Przedstawione zamaszynowanie pozwoli zwiększyć zdolności produkcyjne o 4000 km kabli średniego i wysokiego napięcia oraz o ok. 25 000 km kabli niskiego napięcia.

8. Laboratorium Wysokich Napięć z ekranowaną komorą (kłatką Faradaya) o wymiarach 12 x 10 x 5 m

Wyposażenie:
- Rezonansowy system probierczy RSK 250-2500-50 250 kV 10 A 50 Hz produkcji Haefely Test AG Szwajcaria
- System wodnych głowic kablowych 250 kV
- System olejowych głowic kablowych 75 kV
- System dejonizacji wody WC 120
- Komputerowy system sterowania i pomiaru prądów i napięć GC 96 AC
- Detektor wyladowań niezupełnych TE 571-4 oraz
- Automatyczny mostek do pomiaru pojemności C i stratności dielektrycznej tan delta firmy TETTEX

9. Laboratorium Średnich Napięć z dwoma polami probierczymi o powierzchni 650 m² i basenem do prób napięciowych w wodzie

Wyposażenie:
- Transformator probierczy AC: 100 kV 100 mA; DC: 140 kV 20 mA
- Układ połączeń pola probierczego AC, DC, zestawu komponentów KIT 1W 1G i połączeń uziemiających
- Miernik rezystancji izolacji TETTEX 5476a
- Maszyna wytrzymałościowa Tensometry typu T2000 - Monsanto
- System pomiarów konstrukcyjnych KSM 20/90F
-uszarki EEDK 76
- Suszarki z wymusznym obiegiem powietrza FED 53
- Wielofunkcyjna komora zimno-ciepło MK 53 (-40 +180°C)
- Komora klimatyczna KPT 3606/15 (-70°C)
- Ultratermostat typ MP-5
- Automatyczna korowarka do przygotowania kabli do prób napięciowych w głowicach wodnych typ Aloc Research

Laboratoria posiadają komputerowy system organizacji pól testów (m. in. Sterowanie i nadzór nad próbami napięciowymi) oraz komputerowe zarządzanie lokalną siecią laboratoriów celem rejestrowania, archiwizowania danych i emisji dokumentów.